УДК 336.76.001.18

ПРИМЕНЕНИЕ РЕФЛЕКСИВНОГО АНАЛИЗА КАК ОСНОВАНИЕ ДЛЯ КРАТКОСРОЧНОГО ПРОГНОЗИРОВАНИЯ ПОВЕДЕНИЯ ФИНАНСОВЫХ РЫНКОВ

Милованов Максим Михайлович
Сибирский государственный индустриальный университет

Аннотация
Из существующего довольно большого числа методов прогнозирования финансовых рынков, как классический технический анализ, теория волн Элиота, фундаментальный анализ и т.д. автор в качестве методики исследования применяет рефлексивный анализ. В основе исследования лежит предположение о разном происхождении и поведении трендов на коротком и длинном интервале времени. В статье фундаментально поведение финансового инструмента рассматривается как рефлексивный процесс. Предложенная методика применяется для краткосрочного прогнозирования фьючерсов и акций российского фондового рынка.

Ключевые слова: финансовые рынки


THE USE OF REFLECTIVE ANALYSIS AS A BASIS FOR SHORT-TERM FORECASTING OF FINANCIAL MARKETS

Milovanov Maksim Michailovich
Siberian State Industrial Univercity

Abstract
From there is a fairly large number of methods of forecasting financial markets, as a classical technical analysis, Elliot wave theory, fundamental analysis, etc. author as a research methodology uses reflexive analysis. The study is based on the assumption of different origin and behavior trends in the short and long interval of time. In this paper the fundamental behavior of a financial instrument is regarded as a reflexive process. The proposed method is used for short-term forecasting of futures and shares of the stock market.

Keywords: financial markets


Библиографическая ссылка на статью:
Милованов М.М. Применение рефлексивного анализа как основание для краткосрочного прогнозирования поведения финансовых рынков // Экономика и менеджмент инновационных технологий. 2015. № 2 [Электронный ресурс]. URL: http://ekonomika.snauka.ru/2015/02/8324 (дата обращения: 26.05.2017).

В общем смысле под рефлексивным процессом будем рассматривать влияние реальной ситуации на мышление и поведение участников, и воздействия их мышления и поведения на развитие ситуации, участниками которой они являются. Одним из основоположников исследования рефлексивных процессов является российский и американский учёный-математик Владимир Александрович Лефевр. Он предложил для возможного предсказания человеческого поведения уравнения, в качестве параметров которых выступают воздействие мира на субъект, субъективный образ данного воздействия и интенция субъекта; за результат принимается число, выражающее вероятность того, что некий субъект выполнит в будущем определенное действие.

Для примера рефлексивного процесса рассмотрим игру, которую придумал один из создателей теории информации К. Шеннон – «электронная гадалка Шеннона». Алгоритм игры работает следующим образом. Один человек загадывает одно из двух чисел – 0 или 1. Компьютер не знает этого числа, но умеет печатать 0, 1 или 2. Число 2 означает, что компьютер не берется угадать загаданное число человеком, а 0 или 1 – предположение компьютера о загаданном числе. После предположения компьютера этого человеку сообщают предложение компьютера, а в компьютер вводят число, вновь загаданное человеком.

Сначала компьютер предсказывает довольно плохо, однако после нескольких десятков тестов начинает угадывать в 90% случаев, как бы человек ни пытался запутать её.

Программа устроена следующим образом. В ней присутствует 5-мерный индексный массив А[0:1, 0:2, 0:1, 0:2, 0:1]  состоящий из 72 элементов. Сначала массив заполнен нулями, и компьютер печатает  первые три раза двойки. В дальнейшем компьютер помнит несколько последних ходов своих и ходов человека. Если человек написал последними числа а1, а2, а3  и компьютер на это отвечала b1, b2, b3, то в ячейку А[а1, b1, а2, b2, а3] добавляется единица, то есть компьютер запоминает, что после комбинации а1, b1, а2, b2 человек выбрал число а3. Чтобы предсказать, что теперь напишет человек, компьютер сравнивает числа А[а2, b2, а3, b3, 0] и А[а2, b2, а3, b3, 1]. Если первое число сильно превосходит второе, то компьютер предполагает  число 0, если наоборот, то предсказывает число 1, а если числа отличаются мало, то печатает число 2, то есть отказывается предсказывать. Есть возможность для усовершенствования этой программы. Нужно добавить на i-том шаге в требуемую ячейку не единицу, а число (1.1)^i. Тем самым мы сможем уменьшить вес предыдущих событий, которые человек уже успевает забыть.

Однозначно, если бы человек загадывал свои числа бросанием монеты или с помощью генератора случайных чисел, то данная программа не смогла была бы предсказать заметно более 50% чисел. Но человек не в состоянии загадывать числа случайным образом, и данный алгоритм разгадывает его психологию или тактику.

Данный подход к задаче Шеннона описан в статье «Случайные числа и электронная гадалка», напечатанной в книге «Олимпиады по программированию для школьников» [1].

Исходя из тестирования, программа действительно работает с довольно большой точностью угадывает большинство загаданных человеком чисел.

Однако проверим, как данный алгоритм работает на различных финансовых инструментах на фондовом рынке. За основу короткий период, выбранный случайным образом. Возьмем свечной график и 5-минутные бары с 01.01.2013 до 16.08.2013. Для алгоритма Шеннона в качестве «1» будет возрастающий бар (свеча), «0» падающий бар (свеча).

Инструмент Всего Угадано алгоритмомШеннона
Фьючерс на индекс РТС 24895 5793
Фьючерс на рубль-доллар 24888 6291
Фьючерс на золото 24315 5604
Газпром 16052 4182
Магнит 15744 3979
Сбербанк 16052 4102
Уралкалий 15999 3887
ФСК ЕЭС 16042 4091

Таблица 1. Результаты тестирования алгоритма Шеннона на различных инструментах для 5 минутного таймфрейма

Как видно из таблицы алгоритм Шеннона работает гораздо хуже, чем если бы мы воспользовались простым генератором случайных чисел, который дает около 50% правильных ответов. Однако не стоит говорить о том, что данный подход прогнозирования чисел не работает.

Рассмотрим более краткосрочный период, а именно таймфрейм размером в 1 минуту.

Инструмент Всего Угадано алгоритмом Шеннона
Фьючерс на индекс РТС 124470 115840
Фьючерс на рубль-доллар 124435 110075
Фьючерс на золото 121575 80683
Газпром 80255 56443
Магнит 78715 65653
Сбербанк 80255 57442
Уралкалий 79995 61204
ФСК ЕЭС 80215 61365

Таблица 2. Результаты тестирования алгоритма Шеннона на различных инструментах для 1 минутного таймфрейма

Оценка будущего состояния финансовых инструментов на основе рефлексивных процессов вполне может применяться для прогнозирования поведения финансовых инструментов, Наибольшая степень прогнозирования достигается на краткосрочном интервале времени. Дальнейшим продолжение развития данного подхода можно отнести дриблинги Лефевра – автоматы, реализующие рефлексивное управление и функционирующие наиболее эффективно при противодействии со стороны человека [2].


Библиографический список
  1. Брудно А.Л., Каплан Л.И. Олимпиады по программированию для школьников / Под ред. Б.Н. Наумова. — М.: Наука. 1985. С. 96.
  2. Мячин М.Л., Разина Т.В. Принцип отражения как метод исследования рефлексии. М.: Рефлексивное управление. Тезисы международного симпозиума. 2000. С. 49-51.
  3. Григорян Д.С. Методы прогнозирования ценовых колебаний на финансовых рынках: от истории к современности. Экономика и современный менеджмент: теория и практика. 2014. № 34.-Новосибирск. НП “СибАК”. С. 123-128
  4. Нестеренко Е.А., Челпанова В.А. Специфические особенности российских паевых инвестиционных фондов. Финансовая аналитика: проблемы и решения. 2014. № 41 (227). С. 11-20.
  5. Матковская Я.С. Неоднородность финансового рынка и инновационные способы оценки потребительского поведения на финансовых рынках. Экономический анализ: теория и практика. 2014. № 23. С. 9-16


Все статьи автора «Милованов Максим Михайлович»


© Если вы обнаружили нарушение авторских или смежных прав, пожалуйста, незамедлительно сообщите нам об этом по электронной почте или через форму обратной связи.

Связь с автором (комментарии/рецензии к статье)

Оставить комментарий

Вы должны авторизоваться, чтобы оставить комментарий.

Если Вы еще не зарегистрированы на сайте, то Вам необходимо зарегистрироваться: